
When I first started learning about neural networks, I found it very difficult to match the math to

the code. Most papers and explanations merged the math that's required for neural networks

with the math that's an optimization. It made it very difficult to piece out exactly what was

needed to make it work at all vs what was needed to make it work faster.

This book will build up the math and code for neural networks side by side, starting with the

smallest neural network possible.

By the end of this first chapter, you will:

1. Understand the math that makes neural networks work

2. Have written code that 1:1 matches that math

3. Derived the calculus that makes backpropagation work

4. Implemented both feedforward and backpropagation

5. Built and trained the smallest neural network possible

That's right! By the end of this chapter you'll have derived and understood the calculus that

makes neural networks work, and you'll have written a neural network library based on that

exact same math.

If you haven't already, sign up at https://www.milestonemade.com/building-with-neurons/ to be

notified when new chapters are available.

A neural network is a graph of single neurons, and each neuron is just small math formula. The

output of some neurons is fed as input to other neurons. Mathematically, this means that a

neural network is a composition of math formulas.

Surprisingly, the coefficients in each neuron's formula are initialized to completely random

numbers. Unsurprisingly, this means the initial output of a neural network is completely random

as well! In order for a neural network to make accurate predictions, it needs to be trained - its

neurons' coefficients need to be updated.
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Input/output pairs of training data are used to train the network by comparing its prediction for a

given input to the correct value. An error value is calculated from the difference, and this error

value is used to gently update the neuron formula's coefficients through a process called

backpropagation.

This chapter explains the bare minimum necessary to translate the math of neural networks 1:1

into code. Our goal today is clarity. We're not trying to build an F1 race car; we're not even trying

to build a Model T. We're trying to build a tiny two-stroke lawnmower engine.

By the end of this chapter, you'll have built the smallest possible neural network, derived the

math for backpropagation, and implemented all of it into code. Most importantly, you'll

understand why it all works!

I think we've set ourselves a very reasonable goal: we want to define the smallest possible

neural network. There's no smaller network than just 1 neuron! And since individual neurons are

essentially just math formulas, what's the simplest formula that has at least 1 input and 1

output? A line!

Perfect! Let's use that for our single neuron! Our simple network will take in a single input and

provide a single output:

Let's rewrite this formula using the jargon of neural networks. Instead of calling  and 

coefficients, we'll use  and  for "weight." And instead of , the output of a neuron is

typically called its "activation," so we'll use that term as well.

Before our neuron can predict anything, we'll need to initialize our formula with some weights. If

you're anything like me, this might make you a bit uncomfortable: we're just going to pick small

random numbers to assign to  and  - yikes! Trust me this'll work out. Neural network

software automatically initializes weights randomly, but we'll do it manually so we can see

exactly what's happening. Let's pick 0.1 and 0.2.
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So let's get coding! Well, pseudo-coding. The pseudocode in this book will be easy enough to

read for you to translate into your language of choice.

class Neuron{

    property input

    property activation

    property weights = [0.1, 0.2]

    function feedForward(){

        activation = weight[0] * input + weight[1]

    }

}

Note: our code indexes the weights starting with 0, but most books and academic papers use 1-indexing, so we'll start our formulas

with 1 as well. It's a small detail, but something to keep in mind as we match the math to code.

Even though we've initialized our neuron with a completely random formula for a line, we're

expecting and hoping that this neuron will be able to learn and predict something that's not

random.

This also means that the neuron's formula will change over time. Since our neuron models the

formula , training must change either , , or . But  is provided as our input - the only

values available for us to change inside the neuron are  and ! So it's only these weights that

are allowed to change during training.

Now that we can train our neuron, we need some data to train with!

So we've built our neuron - but what exactly are we going to predict? Well, a neuron that uses

the formula for a line should be pretty good at predicting linear data, so let's train our network to

predict the corresponding Fahrenheit temperature for an input Celsius temperature.

In code, that'd look like:

function convertCtoF(testInput){

    return 1.8 * testInput + 32

}

Perfect, now we can easily generate a piece of test data by picking a random number and

running it through our new function:
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testX = random() % 20 - 10 // pick between -10 and 10

testY = convertCtoF(testX)

This will make it very easy to generate test data without needing to pre-define a huge table of

data.

At this point, we have the math and code for our single-neuron neural network and our test data.

It's time to ask our network for its first prediction.

Our neuron:

Sending our network an input and calculating a prediction is called feedforward. This step is

particularly simple for our case since our network is composed of only a single neuron. For our

feedforward step, we calculate the activation of our neuron for a given input. Let's find out what

our network would predict for the ℉ value of 37℃.

In code, that'd look like:

n = new Neuron()

n.input = 37

prediction = n.feedForward()

print prediction // 3.9

Ok, 3.9℉ is definitely not the correct Fahrenheit value for 17℃, but just how wrong is it? Is it a

lot wrong? or just a little?

To know that, we need to formalize how we calculate our error for a given prediction, and then

how we can use that error measurement to help our network learn.

In order for us to train our neural network, the last thing we need to define is our error formula.

We need to know how wrong our network is after each activation, and since it's been randomly

initialized, I suspect it will be very wrong. We saw above that our network predicts that 37℃ is

3.9℉, but what's the real temperature?
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Yep! Definitely wrong! Just how wrong was our network? Let's define our rate of error as:

Great! That gives us a measured error of 60.7. And since our network is so simple, we can even

graph our measured error rate for any input.

Let's graph that and see what we're working with:

Ok, that's odd, the error dips below 0 on the left hand side. When we predict ℃ for an input of -

40℉, we get a negative error:

What does it even mean to have a negative error? Intuitively, a positive error makes sense: the

larger the error the more wrong our prediction is. In the same way, we expect that the more

negative our error is, the more wrong we are.

Perfect, now our error measure will always be positive, which makes more sense. The further

away our prediction is from reality, the larger the error. If we had asked to predict with -18.7℃,

then our neuron would have correctly predicted -1.66℉ with 0 error.

In the graph below we see the error line hit 0 at -18.7℃.
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Let's update our code:

class Neuron{

    property input

    property activation

    property weights = [0.1, 0.2]

    function feedForward(){

        activation = weight[0] * input + weight[1]

    }

    function simpleErrorFor(goal){

        return goal - activation

    }

    function errorFor(goal){

        return ABS(simpleErrorFor(goal))

    }

}

Next up: training! When we train, we'll be trying to reduce the network's error as close to zero as

possible. We saw above that we can get 0 error for one specific input, training will help us drive

toward 0 error for all inputs. We want that error graph to be as flat on the X axis as possible.

Ok, we're getting very very close to the magic now! Let's get all of our formulas in one place.

We'll use  and  to represent the two weights in our neuron.
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There appears to be a surprising number of moving parts to this very simple neural network! We

have:

1. An input number (17)

2. A correct goal output number (62.6)

3. An incorrect output number (1.9)

4. An error measurement (60.7)

5. And a bunch of formulas

Remember, there's only one piece of this puzzle that we can change during training - the

weights. Let's take a second look at activation and error formulas, defining them in terms of 

and . With the constants filled in and using  for activation and  for error, we get:

Activation is a function with weights as input, and error is a function with activation as input. And

now we see we can substitute the activation formula into the error formula!

Holding each of the weights constant, we can define our error in terms of each weight:

Let's simplify these a bit:

This means that we can now see how each weight affects error! This is different than the error

graph in the previous section. There we graphed how error changed as we changed the input.

Here, we're holding the input constant to see how changing each weight affects the error.
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What can we learn when we graph these? I've plotted  in red and  in blue below, with the

purple dot showing total error :

It might look like our current error is at the exact intersection of the two lines - but that's an

artifact of the graph's zoom. If we zoom in, it'll be clear what's happening: the  error is at 

, and the  error is at .

Having exact equations like this means that we can solve for  directly! When we do that,

we see that setting either  or  will reduce our error to zero.
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Let's try it out and test updating a weight to one of these roots. Using the new value for , our

neuron would look like:

Which would make our activation for that sample input:

Look at that! We've "corrected" our answer by updating just one of our weights and accurately

predicted 17℃ is 62.6℉! Unfortunately, our neuron would still be wrong for every other input -

it's only corrected for that single input. Let's look at the graph of what our neuron predicts

(green) for ℃ inputs vs the true formula (purple).

The graph makes it obvious that we'll only correctly predict that single input of 17℃. And even

looking at the formulas it's clear they won't behave the same.

What we'd really like to see after training our neuron on many test cases is:

It's obviously not enough to train by just using the root values of that error graph. If we just

change  over and over again, we'll just be shifting that red line up and down. And if we only

change  over and over, then we'll just be rotating our line around the point (0, ). We need
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our training to shift and rotate our red line into position to overlap the blue line.

Let's try a different approach and see what else these error formulas are telling us.

Let's look at the  and  graphs again.

Notice that for both  and  formulas, both error lines have negative slopes at their input

weights. What if we move the weights to the right along those lines? If we increase both values,

it should decrease the error!

So let's try something different. Instead of correcting one weight a lot, let's try correcting both

weights just a little:

We still didn't predict the correct answer of 62.6, but our new activation of 3.7 is definitely better

than the original activation of 1.9! Our neuron still isn't accurate, but it's certainly more accurate!

Look again at the  and  graphs above. If we bump  even a tiny bit, we can see that the

error will change dramatically! Similarly, if we change  by the same amount, the error won't

change nearly as much. That's the clue we're looking for! We want to bump each weight

according to how much it would affect the error! The steep slope of  and more shallow slope

of  are our clues for how much to adjust each weight.

This is the essence of how neural networks learn. Do this lots of times for lots of input/output
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pairs, bumping the weights just a bit each time, and voilà! The network has learned!

We're so close! We know why we should bump each weight, and we know what direction to

bump each weight, but we still don't know exact formulas for how much to bump each weight. In

the above example, I chose 0.1, but that's hardly scientific. Instead we should somehow be

using the slope of the error function.

This is our next challenge, and this is where the magic of neural networks really comes alive!

And by "magic," I mean "calculus." And by "calculus," I mean "it's not as bad as it sounds." Let's

use calculus magic with these error graphs to determine how much we should bump each

weight. To do that, we'll need to find the derivatives of the  and  functions.

The slope of a line tells us how much that line changes vertically for every step horizontally. It's

a measure of rate of change for that line, and that's exactly what the derivative of a formula tells

us. For a formula , the derivative  tells us how fast or slow the value of  is

changing at that .

For our purposes, we only need to remember a few key specifics about derivatives. First, the

derivative of  is:

We'll also need to remember the Chain Rule:

or put another way:

Bringing these two together, we get:
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We saw in the previous section that the error of our neuron is simply a function of its weights, 

. We also saw that to minimize the error, we should move in the opposite direction of 

 and 's slope. When the slope of the line is negative, we should increase that weight. And

when the slope is positive, we should decrease that weight. Using this process to update our

neuron's weights is called backpropagation.

Let's try using the  function's derivative with respect to each weight to help us

determine how much we should move down the slope.

Let's start with our error and activation formulas. It'll also be helpful for us to separate out 

 from the absolute value in :

We now see that our total error is the composition of these three functions.

Conveniently, we just reviewed the Chain Rule to help us calculate this exact sort of derivative!

So we know that:

Let's solve for those derivatives:

Now we can solve for 's derivative with respect to each weight! This will tell us how much each

weight is responsible for the error.
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Since we want to move the opposite direction of the slope of the error, we'll want to subtract this

derivative from each weight. Every time we train a new ℃/℉ pair, we'll subtract  from 

and  from .

With our new knowledge of the error derivative formulas with respect to each weight, let's look

again at the graph for simple error and see what this means graphically. We can see clearly

below that our slope for  is steeper than for , so our adjustment to  should be larger than

our adjustment to .

Since  is positive, we can now calculate  and .

And thankfully, we do see that  is steeper than , so our math seems to be matching our

expectations.
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Let's translate everything we just did into code! I find that the math always makes much more

sense to me once I can see it operate in code, and compute step by step.

We'll update our Neuron class below:

class Neuron{

    property input

    property activation

    property weights = [0.1, 0.2]

    function feedForward(){

        activation = weights[0] * input + weights[1]

        return activation

    }

    function backpropagate(goal){

        e_simple = simpleErrorFor(goal)

        delta_w0 = errorDerivativeForWeight0(e_simple)

        delta_w1 = errorDerivativeForWeight1(e_simple)

        // subtract the derivative to move _opposite_ the slope

        weights[0] -= delta_w0

        weights[1] -= delta_w1

    }

    function simpleErrorFor(goal){

        return goal - activation

    }

    function errorFor(goal){

        return ABS(simpleErrorFor(goal))

    }

    function errorDerivativeForWeight0(e_simple){

        e_deriv = (e_simple < 0) ? -1 : 1

        e_simple_deriv = -1

        a_deriv = input

        return e_deriv * e_simple_deriv * a_deriv

    }

    function errorDerivativeForWeight1(e_simple){

        e_deriv = (e_simple < 0) ? -1 : 1

        e_simple_deriv = -1

        a_deriv = 1

        return e_deriv * e_simple_deriv * a_deriv

    }

}

Coding Time



And now, at long last, we can train our neuron!

n = new Neuron()

for(iter = 1 ... 3600){

    celsius = random() % 20 - 10

    fahrenheit = 1.8 * celsius + 32

    n.input = celsius

    n.feedForward()

    n.backpropagate(fahrenheit)

    error = n.errorFor(fahrenheit)

    avgError = avgError * 0.99 + abs(error) * 0.01

    log("Asked for %℃ => %℉. Predicted %℉. Error %", celsius, fahrenheit, n. activation, error)

    if(avgError < .25){

        log("Error is less than 0.25 degrees at iteration %", iter)

        break

    }

}

Uh oh! It doesn't seem to be working. Instead of getting more accurate, our neuron is spiraling

out of control! Its predictions are getting worse and worse.

There's one last piece for us to implement to get our neuron behaving properly!

Let's pull up the graph of our error functions one more time. The red line, , has a very large

slope, so a very small change in  will produce a huge change in the weight.
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This dramatic change in the weight will produce a large change in our predictions too. But

remember our experiment where we bumped the neuron's weights? We were making only tiny

changes to the weights to improve the prediction, but the slope of our lines is a much larger

number in comparison.

Instead of using the full magnitude of the slope to update the weight, we should try scaling it to

ensure its a very small bump to the weight. It turns out that the exact value of each slope is

much less important than the relative slopes of the error lines. It's more important that 

 than it is that  is a large number.

Let's update our Neuron code on the following page and add in a learning rate.

With our new learning rate implemented, it's time to train again! This time you should see the

weights converge to match the correct formula. After 3600 iterations, the neuron will predict

within just ℉ of the correct value!

In the next chapter, we'll look at how different error formulas affect our math and our neuron's

training speed.
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class Neuron{

    property input

    property activation

    property weights = [0.1, 0.2]

    property learningRate = 0.01

    function feedForward(){

        activation = weights[0] * input + weights[1]

        return activation

    }

    function backpropagate(goal){

        e_simple = simpleErrorFor(goal)

        delta_w0 = errorDerivativeForWeight0(e_simple)

        delta_w1 = errorDerivativeForWeight1(e_simple)

        // subtract the derivative to move _opposite_ the slope.

        // use learningRate to ensure _small_ bump

        weights[0] -= learningRate * delta_w0

        weights[1] -= learningRate * delta_w1

    }

    function simpleErrorFor(goal){

        return goal - activation

    }

    function errorFor(goal){

        return ABS(simpleErrorFor(goal))

    }

    function errorDerivativeForWeight0(e_simple){

        e_deriv = (e_simple < 0) ? -1 : 1

        e_simple_deriv = -1

        a_deriv = input

        return e_deriv * e_simple_deriv * a_deriv

    }

    function errorDerivativeForWeight1(e_simple){

        e_deriv = (e_simple < 0) ? -1 : 1

        e_simple_deriv = -1

        a_deriv = 1

        return e_deriv * e_simple_deriv * a_deriv

    }

}



In the last chapter, we saw how gently bumping the weights of our neuron would train the

neuron toward the correct answer. To find how much to bump each weight, we calculated the

total error as the difference between our desired output and our actual output, and we then

calculated the derivative of our neuron's formula to assign some of that error to each weight.

The formal name for this measure of error is the mean absolute error (MAE). Error functions are

also called cost functions or loss functions.

Let's take a look at the weights' error formulas again.

Notice that the amount we change each weight depends on two things:

1. The sign of , and

2. The size of 

Notably, the size of a weight's adjustment does not depend on the size of our error! The

adjustment to the weights depends on the slope of the error, not its magnitude. This means that

very large errors are having the same sized effect on our neuron as very small errors.

In this chapter we'll be learning about the Mean Squared Error, which adjusts each weight

proportionally based on how much each weight contributed to the neuron's error.

As an example, imagine that a criminal gang is captured and charged for various crimes they

have committed. The leader ( ), who bears more responsibility, will be punished more harshly

than a low-level member ( ) who was less involved, and the size of their punishment will rise

if more serious crimes were committed ( ). Similarly, for our neuron, very large mistakes

deserve larger corrections, and very small mistakes can be ignored all together.

We might think of  and  as the amount of blame to assign to each weight. A larger 

means more blame assigned to that weight. Next, let's take a look at the Mean Squared Error,

which adjusts the weights of our neuron proportionally to each weight's blame.
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The mean squared error (MSE) is defined as the square of the goal  minus the neuron's

activation . We're just squaring the simple error that we'd calculated last chapter - that's it!

Let's get a quick idea of how this new error formula behaves. Let's calculate the mean squared

error formula for the entire neuron from the last chapter.

With the mean squared error, we see that the slope is much steeper further away from zero

error, but it starts to flatten out as the error approaches zero. It behaves just like it looks: If we

could place a ball at the top of the slope, it'd fall quickly toward zero, but if we placed a ball very

close to the bottom of the valley, then it'd roll much slower. Similarly, the closer the error is to

zero, the smaller the change in the weight.

So how does this new formula affect the blame we assign each weight? How do their derivatives

change? Remembering our chain rule,

we calculate:
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Conveniently, the remaining derivatives remain unchanged.

Like last time, we solve for 's derivative with respect to each weight.

Note: You may sometimes see the MSE calculated without multiplying  by

2. This is done by defining the error function as , so that the 2s in the

derivative will cancel out altogether.  Tensorflow's implementation of MSE,

however, does not simplify with , so we'll be leaving the 2 in our derivative as

well. (Initially, the thought of willy-nilly adding or removing a 2 made me very

uncomfortable, but in fact, our network already scales everything by a learning rate

anyway, so any additional linear scale doesn't matter.)

Unlike in Chapter 1,  is a function of both  and the neuron's  to update the

weight's value. So with MSE, the amount we update each weight is a function of more than just 

.

Looking at our neuron's formula , we see that no matter what the value of 

 is, only the first half of the formula is affected , and the second half of the

formula is always the same . Similarly, when we calculate adjustments to our weights, the 

 should only affect the adjustment the first weight  and not the second weight . We'll

talk more about this in Chapter 3.

Updating our code to implement MSE is straight forward. The only changes to our Neuron class

are the formula in errorFor()  and the e_deriv  portion of the derivative functions:
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    function errorFor(goal){

        return pow(simpleErrorFor(goal), 2)         // updated

    }

    function errorDerivativeForWeight0(e_simple){

        e_deriv = 2 * e_simple                      // updated

        e_simple_deriv = -1

        a_deriv = input

        return e_deriv * e_simple_deriv * a_deriv

    }

    function errorDerivativeForWeight1(e_simple){

        e_deriv = 2 * e_simple                      // updated

        e_simple_deriv = -1

        a_deriv = 1

        return e_deriv * e_simple_deriv * a_deriv

    }

Those three lines are all that's needed to swap out our old error measure for our new mean

squared error.

So is this new error measurement better than our original one? Let's find out how a new error

formula affects how fast we can train our network. When we used  for our error

calculation in Chapter 1, it took us 3600 training iterations until our neuron could predict within 

a degree. I've added a rolling average calculation to our training code below, so let's find out

how many iterations our updated neuron will take to train.

n = new Neuron()

for(iter = 1 ... 3600){

    celsius = random() % 20 - 10

    fahrenheit = 1.8 * celsius + 32

    n.input = celsius

    n.feedForward()

    n.backpropagate(fahrenheit)

    avgError = avgError * 0.99 + abs(n.errorFor(y)) * 0.01

    if(avgError < .25){

        log("Error is less than 0.25 degrees at iteration %", iter)

        break

    }

}

Learning Speed
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Impressive! The new neuron takes only 800 iterations until it can predict within  a degree, far

less than the 3600 needed when we used MAE. Our neuron converges to the correct answer

dramatically faster with this new error formula. And that makes sense: at the beginning of

training, the slope of the error is much steeper with  than with , so our neuron

makes more dramatic changes to its weights earlier in the training process.

So far we've been defining , but in some places you'll see error defined as

. How does defining  in this opposite way affect the adjustments to our

weight? Let's recalculate the derivatives for MSE using this new  measure for error,

which we'll call .

This flips the sign of our error, does it also flip the sign of our adjustment? Why or why not?

And now we see that the adjustments to our weights are flipped as well, but remember that the

sign of  has flipped as well, so our weights are changed by the same amount in the same

direction.
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So if you ever see error definitions using  instead of , you can rest easy that all of

the math works out exactly the same. Our neuron's weights will be updated the same direction

either way.

As I was first learning about neural networks, it was at this point that things really started to

make sense from the math perspective, but I was still unsure from the code perspective.

Most tutorials either used a library like Keras that had already separated error from activation, or

by building a bare bones python network that had the error formula baked in and unchangeable,

as we've done so far.

Specifically, in our case, the error calculations in errorDerivativeForWeight  are tied

much too tightly to the neuron itself.

    function errorDerivativeForWeight0(e_simple){

        e_deriv = 2 * e_simple // updated

        e_simple_deriv = -1

        a_deriv = input

        return e_deriv * e_simple_deriv * a_deriv

    }

It's convenient for the neuron to calculate its own error from a goal, and then to calculate its own

e_deriv , but it makes it much harder to hot-swap out different error methods to see how

they behave.

Ideally, the error calculations would be factored out from the neuron's code, and it wasn't

immediately clear which pieces of that function should stay in the neuron, if any, and which

would be pulled out into an Error class.

Looking at the math again, we can separate out the forward propagation into two sections:

everything up to the neuron's activation (the weights, input, and neuron formula), and everything

after the neuron's activation (the simple error and final error).

For backpropagation, we align these same responsibilities to their derivatives. Since we are

splitting  into parts with the chain rule, the error function is responsible for the first part ,

and the neuron is responsible for calculating the last part .
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For us to be able to swap out error implementations, the derivative  that we calculate in

e_deriv  should be handled outside of the neuron, and  from a_deriv  onward should

stay inside the neuron. Our neuron shouldn't care at all about how the error's derivative was

calculated, it only needs to know the final derivative.

In that separation above, the neuron needs to know about , and then it can calculate its

own  and apply that error to each weight.

In code, this separation of responsibilities looks like:

    // Somewhere else, outside the Neuron class

    e_final_deriv = 2 * e_simple

    e_simple_deriv = -1

    e_deriv = e_final_deriv * e_simple_deriv

    // a much simpler function for the neuron

    function errorDerivativeForWeight0(e_deriv){

        a_deriv = input

        return e_deriv * a_deriv

    }

So our future error calculator will calculate e_deriv , and our neuron will still calculate

a_deriv . That's the correct separation of powers, as the neuron controls its activation, so it

should control the , and the error calculator handles calculating error from activation, so it

should handle .

Currently, our neuron's code contains 100% of the formulas that make the neural network work.

Just as we've done in the math formulas above, I find it very helpful to separate out the error

function from the neuron in our code too. This way, I can think of our  neuron

separately from our  or  error functions, whereas right now all of that code is

jumbled into the same class.

Let's start by pull the errors out into their own classes. Each error option should be able to

calculate its absolute error and its derivative with respect to activation, so we'll only need those

two functions for each error.

∂e

∂a

∂a

∂w

∂efinal

∂a

∂a

∂w

∂a

∂w

∂e

∂a

Refactoring Error Functions

a = i+w1 w2

(esimple)
2 ∣∣esimple

∣∣



abstract class SimpleError{

    function error(goal, activation){

        return goal - activation

    }

    function derivative(goal, activation){

        return -1

    }

}

class ABSError : SimpleError{

    function error(goal, activation){

        return abs(super.error(goal, activation))

    }

    function derivative(goal, activation){

        derivSimpleError = super.derivative(goal, activation)

        if (super.error(goal, activation) > 0) {

            derivABS = 1

        } else {

            derivABS = -1

        }

        return derivABS * derivSimpleError

    }

}

class MSEError : SimpleError{

    function error(goal, activation){

        simpleErr = super.error(goal, activation)

        return simpleErr * simpleErr

    }

    function derivative(goal, activation){

        derivSimpleError = super.derivative(goal, activation)

        derivMSE = 2 * super.error(goal, activation)

        return derivMSE * derivSimpleError

    }

}

Looking at these error classes, it's easier to see the requirements for building even more error

functions: we need to calculate the error given a goal and activation, and also be able to

compute its derivative with the same inputs. As long as we can compute the total error and

derivative with just a goal and activation as inputs, then we have enough to build a new error

function.

Now that we have our error functions separated out into their own classes. Let's update our

neuron class to use these error classes instead of calculating its own error.



class Neuron{

    property input

    property activation

    property weights = [0.1, 0.2]

    property learningRate = 0.01

    function feedForward(){

        activation = weights[0] * input + weights[1]

        return activation

    }

    function backpropagate(e_deriv){

        delta_w0 = errorDerivativeForWeight0(e_deriv)

        delta_w1 = errorDerivativeForWeight1(e_deriv)

        weights[0] -= learningRate * delta_w0

        weights[1] -= learningRate * delta_w1

    }

    function errorDerivativeForWeight0(e_deriv){

        a_deriv = input

        return e_deriv * a_deriv

    }

    function errorDerivativeForWeight1(e_deriv){

        a_deriv = 1

        return e_deriv * e_simple_deriv * a_deriv

    }

}

These new error classes and updated Neuron class let us easily swap out the error method

used during training.

n = new Neuron()

n = new Neuron()

errCalc = MSEError.singleton

// or errCalc = ABSError.singleton

for(1 ... 3600){

    celsius = random() % 20 - 10

    fahrenheit = 1.8 * celsius + 32

    n.input = celsius

    n.feedForward()

    e_deriv = errCalc.derivative(fahrenheit, n.activation)

    n.backpropagate(e_deriv)

    log("Asked for %℃ => %℉. Predicted %℉. Error %", 

        celsius, fahrenheit, n. activation, error)

}



That's all we need to do to change how we calculate a neuron's error. Next, we'll start looking at

different kinds of neurons. So far we've only seen linear neurons , but in Chapter 3

we'll look into non-linear neurons.

Thanks for reading! I'd love to know what you thought of Chapter 1 and 2, and what you'd like to

see in upcoming chapters. Please send me your feedback at adam@milestonemade.com.

And if you haven't already, sign up at https://www.milestonemade.com/building-with-neurons/ to

be notified when new chapters are available!
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