
In the last chapter, we saw how gently bumping the weights of our neuron would train the
neuron toward the correct answer. To find how much to bump each weight, we calculated the
total error as the difference between our desired output and our actual output, and we then
calculated the derivative of our neuron's formula to assign some of that error to each weight.
The formal name for this measure of error is the mean absolute error (MAE). Error functions
are also called cost functions or loss functions.

Let's take a look at the weights' error formulas again.

Notice that the amount we change each weight depends on two things:

1. The sign of , and
2. The size of

Notably, the size of a weight's adjustment does not depend on the size of our error! The
adjustment to the weights depends on the slope of the error, not its magnitude. This means
that very large errors are having the same sized effect on our neuron as very small errors.

In this chapter we'll be learning about the Mean Squared Error, which adjusts each weight
proportionally based on how much each weight contributed to the neuron's error.

As an example, imagine that a criminal gang is captured and charged for various crimes they
have committed. The leader (), who bears more responsibility, will be punished more
harshly than a low-level member () who was less involved, and the size of their punishment
will rise if more serious crimes were committed (). Similarly, for our neuron, very large
mistakes deserve larger corrections, and very small mistakes can be ignored all together.

We might think of and as the amount of blame to assign to each weight. A larger
means more blame assigned to that weight. Next, let's take a look at the Mean Squared Error,
which adjusts the weights of our neuron proportionally to each weight's blame.

Chapter 2

Limitations of Absolute Error

()e′w1 esimple

()e′w2 esimple

=

=

{ input

−input

< 0esimple

> 0esimple

{1
−1

< 0esimple

> 0esimple

esimple

input

e′w1
e′w2

esimple

e′w1 e′w2 e′w

The mean squared error (MSE) is defined as the square of the goal minus the neuron's
activation . We're just squaring the simple error that we'd calculated last chapter - that's it!

Let's get a quick idea of how this new error formula behaves. Let's calculate the mean squared
error formula for the entire neuron from the last chapter.

With the mean squared error, we see that the slope is much steeper further away from zero
error, but it starts to flatten out as the error approaches zero. It behaves just like it looks: If we
could place a ball at the top of the slope, it'd fall quickly toward zero, but if we placed a ball
very close to the bottom of the valley, then it'd roll much slower. Similarly, the closer the error
is to zero, the smaller the change in the weight.

So how does this new formula affect the blame we assign each weight? How do their
derivatives change? Remembering our chain rule,

we calculate:

Mean Squared Error

g

a

esimple

emse

=

=

g− a

(esimple)2

e

e

e

e

=
=
=
=

(g− a)2

((1.8 × C + 32) − (0.1 × C + 0.2))2

(1.7 × C + 31.8)2

2.89 × + 108.12 × C + 1011.24C2

=
∂e

∂w

∂emse

∂esimple

∂esimple

∂a

∂a

∂w

=
∂emse

∂esimple

(
∂

∂esimple

esimple)2 = 2 × esimple

Conveniently, the remaining derivatives remain unchanged.

Like last time, we solve for 's derivative with respect to each weight.

Note: You may sometimes see the MSE calculated without multiplying by 2. This is
done by defining the error function as , so that the 2s in the derivative will cancel
out altogether. Tensorflow's implementation of MSE, however, does not simplify with , so
we'll be leaving the 2 in our derivative as well. (Initially, the thought of willy-nilly adding or
removing a 2 made me very uncomfortable, but in fact, our network already scales everything
by a learning rate anyway, so any additional linear scale doesn't matter.)

Unlike in Chapter 1, is a function of both and the neuron's to update the
weight's value. So with MSE, the amount we update each weight is a function of more than
just .

Looking at our neuron's formula , we see that no matter what the value of
 is, only the first half of the formula is affected , and the second half of

the formula is always the same . Similarly, when we calculate adjustments to our weights,
the should only affect the adjustment the first weight and not the second weight .
We'll talk more about this in Chapter 3.

Updating our code to implement MSE is straight forward. The only changes to our Neuron
class are the formula in errorFor() and the e_deriv portion of the derivative functions:

=
∂esimple

∂a
(g− a)

∂
∂a

= −1

=
∂a

∂w1

=
∂a

∂w2

(× input+)
∂
∂w1

w1 w2

		 (× input+)
∂
∂w2

w1 w2

= input

= 1

e

(input,)e′w1 esimple

(1,)e′w2 esimple

= =
∂e

∂w1

= =
∂e

∂w2

(2 ×)(−1)(input)esimple

(2 ×)(−1)(1)esimple

= −2 × × inputesimple

= −2 × esimple

esimple

(g− a1
2)2

1 1
2

e′w esimple input

esimple

input× +w1 w2

input (input×)w1

()w2

input w1 w2

MSE in Code

Those three lines are all that's needed to swap out our old error measure for our new mean
squared error.

So is this new error measurement better than our original one? Let's find out how a new error
formula affects how fast we can train our network. When we used for our error
calculation in Chapter 1, it took us 3600 training iterations until our neuron could predict within

 a degree. I've added a rolling average calculation to our training code below, so let's find out
how many iterations our updated neuron will take to train.

 function errorFor(goal){ function errorFor(goal){
 return pow(simpleErrorFor(goal), 2) // updated return pow(simpleErrorFor(goal), 2) // updated
 } }

 function errorDerivativeForWeight0(e_simple){ function errorDerivativeForWeight0(e_simple){
 e_deriv = 2 * e_simple // updated e_deriv = 2 * e_simple // updated
 e_simple_deriv = -1 e_simple_deriv = -1
 a_deriv = input a_deriv = input
 return e_deriv * e_simple_deriv * a_deriv return e_deriv * e_simple_deriv * a_deriv
 } }

 function errorDerivativeForWeight1(e_simple){ function errorDerivativeForWeight1(e_simple){
 e_deriv = 2 * e_simple // updated e_deriv = 2 * e_simple // updated
 e_simple_deriv = -1 e_simple_deriv = -1
 a_deriv = 1 a_deriv = 1
 return e_deriv * e_simple_deriv * a_deriv return e_deriv * e_simple_deriv * a_deriv
 } }

11
22
33
44
55
66
77
88
99
1010
1111
1212
1313
1414
1515
1616
1717

Learning Speed

∣∣esimple∣∣

1
2

n = new Neuron()n = new Neuron()

for(iter = 1 ... 3600){for(iter = 1 ... 3600){
 celsius = random() % 20 - 10 celsius = random() % 20 - 10
 fahrenheit = 1.8 * celsius + 32 fahrenheit = 1.8 * celsius + 32

 n.input = celsius n.input = celsius
 n.feedForward() n.feedForward()
 n.backpropagate(fahrenheit) n.backpropagate(fahrenheit)

 avgError = avgError * 0.99 + abs(n.errorFor(y)) * 0.01 avgError = avgError * 0.99 + abs(n.errorFor(y)) * 0.01

 if(avgError < .25){ if(avgError < .25){
 log("Error is less than 0.25 degrees at iteration %", iter) log("Error is less than 0.25 degrees at iteration %", iter)
 break break
 } }
}}

11
22
33
44
55
66
77
88
99
1010
1111
1212
1313
1414
1515
1616
1717

1

Impressive! The new neuron takes only 800 iterations until it can predict within a degree, far
less than the 3600 needed when we used MAE. Our neuron converges to the correct answer
dramatically faster with this new error formula. And that makes sense: at the beginning of
training, the slope of the error is much steeper with than with , so our
neuron makes more dramatic changes to its weights earlier in the training process.

So far we've been defining , but in some places you'll see error defined as
. How does defining in this opposite way affect the adjustments to

our weight? Let's recalculate the derivatives for MSE using this new measure for
error, which we'll call .

This flips the sign of our error, does it also flip the sign of our adjustment? Why or why not?

And now we see that the adjustments to our weights are flipped as well, but remember that the
sign of has flipped as well, so our weights are changed by the same amount in the
same direction.

1
2

(esimple)2 ∣∣esimple∣∣

Flipping esimple

= (g− a)esimple

= (a− g)esimple esimple

(a− g)
eflipped

=eflipped a− g = −esimple

=
∂emse

∂eflipped

=
∂eflipped

∂a

=
∂a

∂w1

=
∂a

∂w2

(
∂

∂eflipped

eflipped)2

(a− g)
∂
∂a

(× input+)
∂
∂w1

w1 w2

		 (× input+)
∂
∂w2

w1 w2

= 2 × eflipped

= 1

= input

= 1

(different)

esimple

(input,)e′w1 eflipped

(1,)e′w2 eflipped

=

=

∂e

∂w1

∂e

∂w2

=

=

=

=

=

=

(2 ×)(1)(input)eflipped

2 × × inputeflipped

−2 × × inputesimple

(2 ×)(1)(1)eflipped

2 × eflipped

−2 × esimple

(same!)

(same!)

So if you ever see error definitions using instead of , you can rest easy that all of
the math works out exactly the same. Our neuron's weights will be updated the same direction
either way.

As I was first learning about neural networks, it was at this point that things really started to
make sense from the math perspective, but I was still unsure from the code perspective.

Most tutorials either used a library like Keras that had already separated error from activation,
or by building a bare bones python network that had the error formula baked in and
unchangeable, as we've done so far.

Specifically, in our case, the error calculations in errorDerivativeForWeight are tied
much too tightly to the neuron itself.

It's convenient for the neuron to calculate its own error from a goal, and then to calculate its
own e_deriv , but it makes it much harder to hot-swap out different error methods to see
how they behave.

Ideally, the error calculations would be factored out from the neuron's code, and it wasn't
immediately clear which pieces of that function should stay in the neuron, if any, and which
would be pulled out into an Error class.

Looking at the math again, we can separate out the forward propagation into two sections:
everything up to the neuron's activation (the weights, input, and neuron formula), and
everything after the neuron's activation (the simple error and final error).

For backpropagation, we align these same responsibilities to their derivatives. Since we are
splitting into parts with the chain rule, the error function is responsible for the first part ,
and the neuron is responsible for calculating the last part .

a− g g− a

Activation vs Error

 function errorDerivativeForWeight0(e_simple){ function errorDerivativeForWeight0(e_simple){
 e_deriv = 2 * e_simple // updated e_deriv = 2 * e_simple // updated
 e_simple_deriv = -1 e_simple_deriv = -1
 a_deriv = input a_deriv = input
 return e_deriv * e_simple_deriv * a_deriv return e_deriv * e_simple_deriv * a_deriv
 } }

11
22
33
44
55
66

⇒w, i⇒ a
neuron

⇒esimple efinal
error

∂e
∂w

∂e
∂a

∂a
∂w

=
∂e

∂w

∂efinal

∂esimple

∂esimple

∂a
error

×
∂a

∂w
neuron

∂e

For us to be able to swap out error implementations, the derivative that we calculate in
e_deriv should be handled outside of the neuron, and from a_deriv onward should

stay inside the neuron. Our neuron shouldn't care at all about how the error's derivative was
calculated, it only needs to know the final derivative.

In that separation above, the neuron needs to know about , and then it can calculate its
own and apply that error to each weight.

In code, this separation of responsibilities looks like:

So our future error calculator will calculate e_deriv , and our neuron will still calculate
a_deriv . That's the correct separation of powers, as the neuron controls its activation, so it

should control the , and the error calculator handles calculating error from activation, so it
should handle .

Currently, our neuron's code contains 100% of the formulas that make the neural network
work. Just as we've done in the math formulas above, I find it very helpful to separate out the
error function from the neuron in our code too. This way, I can think of our
neuron separately from our or error functions, whereas right now all of that
code is jumbled into the same class.

Let's start by pull the errors out into their own classes. Each error option should be able to
calculate its absolute error and its derivative with respect to activation, so we'll only need those
two functions for each error.

∂e
∂a

∂a
∂w

∂efinal

∂a
∂a
∂w

 // Somewhere else, outside the Neuron class // Somewhere else, outside the Neuron class
 e_final_deriv = 2 * e_simple e_final_deriv = 2 * e_simple
 e_simple_deriv = -1 e_simple_deriv = -1
 e_deriv = e_final_deriv * e_simple_deriv e_deriv = e_final_deriv * e_simple_deriv

 // a much simpler function for the neuron // a much simpler function for the neuron
 function errorDerivativeForWeight0(e_deriv){ function errorDerivativeForWeight0(e_deriv){
 a_deriv = input a_deriv = input
 return e_deriv * a_deriv return e_deriv * a_deriv
 } }

11
22
33
44
55
66
77
88
99
1010

∂a
∂w

∂e
∂a

Refactoring Error Functions

a = i+w1 w2

(esimple)2 ∣∣esimple∣∣

Looking at these error classes, it's easier to see the requirements for building even more error
functions: we need to calculate the error given a goal and activation, and also be able to
compute its derivative with the same inputs. As long as we can compute the total error and
derivative with just a goal and activation as inputs, then we have enough to build a new error
function.

Now that we have our error functions separated out into their own classes. Let's update our
neuron class to use these error classes instead of calculating its own error.

abstract class SimpleError{abstract class SimpleError{
 function error(goal, activation){ function error(goal, activation){
 return goal - activation return goal - activation
 } }
 function derivative(goal, activation){ function derivative(goal, activation){
 return -1 return -1
 } }
}}

class ABSError : SimpleError{class ABSError : SimpleError{
 function error(goal, activation){ function error(goal, activation){
 return abs(super.error(goal, activation)) return abs(super.error(goal, activation))
 } }

 function derivative(goal, activation){ function derivative(goal, activation){
 derivSimpleError = super.derivative(goal, activation) derivSimpleError = super.derivative(goal, activation)
 if (super.error(goal, activation) > 0) { if (super.error(goal, activation) > 0) {
 derivABS = 1 derivABS = 1
 } else { } else {
 derivABS = -1 derivABS = -1
 } }
 return derivABS * derivSimpleError return derivABS * derivSimpleError
 } }
}}

class MSEError : SimpleError{class MSEError : SimpleError{
 function error(goal, activation){ function error(goal, activation){
 simpleErr = super.error(goal, activation) simpleErr = super.error(goal, activation)
 return simpleErr * simpleErr return simpleErr * simpleErr
 } }

 function derivative(goal, activation){ function derivative(goal, activation){
 derivSimpleError = super.derivative(goal, activation) derivSimpleError = super.derivative(goal, activation)
 derivMSE = 2 * super.error(goal, activation) derivMSE = 2 * super.error(goal, activation)
 return derivMSE * derivSimpleError return derivMSE * derivSimpleError
 } }
}}

11
22
33
44
55
66
77
88
99
1010
1111
1212
1313
1414
1515
1616
1717
1818
1919
2020
2121
2222
2323
2424
2525
2626
2727
2828
2929
3030
3131
3232
3333
3434
3535
3636
3737

These new error classes and updated Neuron class let us easily swap out the error method
used during training.

class Neuron{class Neuron{
 property input property input
 property activation property activation
 property weights = [0.1, 0.2] property weights = [0.1, 0.2]
 property learningRate = 0.01 property learningRate = 0.01

 function feedForward(){ function feedForward(){
 activation = weights[0] * input + weights[1] activation = weights[0] * input + weights[1]
 return activation return activation
 } }

 function backpropagate(e_deriv){ function backpropagate(e_deriv){
 delta_w0 = errorDerivativeForWeight0(e_deriv) delta_w0 = errorDerivativeForWeight0(e_deriv)
 delta_w1 = errorDerivativeForWeight1(e_deriv) delta_w1 = errorDerivativeForWeight1(e_deriv)
 weights[0] -= learningRate * delta_w0 weights[0] -= learningRate * delta_w0
 weights[1] -= learningRate * delta_w1 weights[1] -= learningRate * delta_w1
 } }

 function errorDerivativeForWeight0(e_deriv){ function errorDerivativeForWeight0(e_deriv){
 a_deriv = input a_deriv = input
 return e_deriv * a_deriv return e_deriv * a_deriv
 } }

 function errorDerivativeForWeight1(e_deriv){ function errorDerivativeForWeight1(e_deriv){
 a_deriv = 1 a_deriv = 1
 return e_deriv * e_simple_deriv * a_deriv return e_deriv * e_simple_deriv * a_deriv
 } }
}}

11
22
33
44
55
66
77
88
99
1010
1111
1212
1313
1414
1515
1616
1717
1818
1919
2020
2121
2222
2323
2424
2525
2626
2727
2828

That's all we need to do to change how we calculate a neuron's error. Next, we'll start looking
at different kinds of neurons. So far we've only seen linear neurons , but in Chapter
3 we'll look into non-linear neurons.

Thanks for reading! I'd love to know what you thought of Chapter 1 and 2, and what you'd like
to see in upcoming chapters. Please send me your feedback at adam@milestonemade.com.

And if you haven't already, sign up at https://www.milestonemade.com/building-with-neurons/
to be notified when new chapters are available!

n = new Neuron()n = new Neuron()
n = new Neuron()n = new Neuron()
errCalc = MSEError.singletonerrCalc = MSEError.singleton
// or errCalc = ABSError.singleton// or errCalc = ABSError.singleton

for(1 ... 3600){for(1 ... 3600){
 celsius = random() % 20 - 10 celsius = random() % 20 - 10
 fahrenheit = 1.8 * celsius + 32 fahrenheit = 1.8 * celsius + 32

 n.input = celsius n.input = celsius
 n.feedForward() n.feedForward()

 e_deriv = errCalc.derivative(fahrenheit, n.activation) e_deriv = errCalc.derivative(fahrenheit, n.activation)
 n.backpropagate(e_deriv) n.backpropagate(e_deriv)

 log("Asked for %℃ => %℉. Predicted %℉. Error %", log("Asked for %℃ => %℉. Predicted %℉. Error %",
 celsius, fahrenheit, n. activation, error) celsius, fahrenheit, n. activation, error)
}}

11
22
33
44
55
66
77
88
99
1010
1111
1212
1313
1414
1515
1616
1717
1818

i+w1 w2

I Want Your Feedback!

mailto:adam@milestonemade.com
https://www.milestonemade.com/building-with-neurons/

	Chapter 2
	Limitations of Absolute Error
	Mean Squared Error
	MSE in Code
	Learning Speed
	Flipping esimpleesimple
	Activation vs Error
	Refactoring Error Functions

	I Want Your Feedback!

